
Development of an ATM-based event
builder for the PHENIX experiment at RHIC

P. Steinberg, B. Cole, S. Markacs
Columbia University, Nevis Labs

P.O. Box 137
Irvington, New York 10533

for the PHENIX collaboration

Abstract:

We report on the design and implementation of an ATM-based event builder for the PHENIX detector at
RHIC, based on Intel processors running Windows NT and Winsock-2. The software design is fully
object-oriented (using Visual C++ 5.0 and 6.0), which has led to good design decisions and has facilitated
the division of labor among several programmers. Preliminary measurements indicate that Winsock will in
fact deliver sufficient bandwidth to handle the expected data rates. We finally report on the current status
and outlook.

Introduction

The PHENIX experiment at RHIC will study 100 GeV/nucleon Au+Au collisions as well as p+p and p+A
collisions at higher energies. The main goal is to study the quark-gluon plasma (QGP), a state of matter in
which quarks are deconfined and move freely through the hot medium. RHIC will also be able to
accelerate polarized protons, allowing the study of spin-dependent structure functions as well as parity
violating effects. The PHENIX experiment has been designed to study various phenomena present in both
of these systems – direct photons, heavy flavor mesons, and jets – with high-precision momentum and
particle identication measurements in a limited acceptance at a high rate. To do this, the detector has
several distinct subsystems which have to be read out separately and assembled event-by-event. Thus, we
require an event builder capable of handling event rates of at least 1kHz in heavy ion collisions and 25 kHz
in p+p collisions. We will discuss the design, implementation, and current progress of the PHENIX event
builder.

0.1

1

10

100

1000

1E4

1E5

1E6

1E7

p-p(MB)
p-O

p-Si

p-Cu
p-I

p-Au

O-O(MB)
Si-Si(MB)

Si-Cu(MB)

Si-I(MB)
Cu-Cu(MB)

Si-Au(MB)

I-I(MB)
O-O(Cn)

Au-Au(MB)

Si-Si(Cn)
Cu-Cu(Cn)

p-p(Cn)

I-I(Cn)
Au-Au(Cn)

Nuclear System

IntRate (kHz)

Tracks/Int.

Tracks/sec

MB/sec

Figure 1: Estimated Level 1 trigger rates for various colliding systems at RHIC

Rates and Requirements

Figure 1 shows the expected event rates for various systems, from minimum-bias p+p to central (high-
multiplicity) Au+Au, where the Level 1 trigger rates are about 1000Hz. It should be noted that while the
larger systems have large multiplicities and therefore large data volumes, the luminosity decreases, giving
at approximately constant data rate of several hundred MB/second. We expect our events to have an
average zero-suppressed event size of 200kB. This requires us to handle data rates from about 200
MB/second (for nuclear collisions) to 1GB/second (for proton collisions). However, in order to handle
possible RHIC upgrades, we have decided to set an ultimate bandwidth goal of ten times RHIC design
luminosity, or 2GB/second. In other words, a high-speed event builder is crucial for maximizing the
physics potential of the PHENIX detector.

Besides maximizing overall rate, PHENIX has also set out several other important requirements for its
event builder. It must be capable of being split into as many independent “partitions”, quasi-independent
event builder systems, as it has sources. This will be an invaluable feature when attempting to debug newer
subsystems during normal data-taking. It must also be optimized to allow online event reconstruction,
allowing us to do Level 2 triggering to increase our sensitivity to rare signals which occur on the 10-6 level.

Hardware Implementation

In each event, the various Front-End Modules (FEMs) for each subsystem deliver their data to VME-based
Data Collection Modules (DCMs), which have substantial buffering and DSP capabilities. A Partition
Module (PM) which resides in the same VME crate, and which can be read out at rates up to
160MB/second, will multiplex the DCMs. The event builder must bring together the event data from the
various PMs into a single processor, where the data can be assembled and archived.

In general, an event builder consists of processors that act as data sources and destinations, and a network
switch to transmit the data between them. Our choices for processors have been constrained by several
major factors. While we have strict performance requirements (outlined above) and desire a scalable,
upgradable system, we are constrained by a limited budget and limited manpower, which restricts us from
developing custom drivers in the short time before RHIC data-taking begins. The budget limitation
immediately suggests taking advantage of the huge market for Intel-based PCs and their applications.
However, the manpower limitation precludes the use of Linux as the main operating system, as there is not
yet a set of standard drivers for many currently used networking technologies. This leaves us with the
choice of using Windows NT, which has widespread driver support for many technologies.

ONCS
(Archiving)

Data & Control

Fast Control

Slow Control

Level-1
DCM’s

Detector
B DCM’s

Detector
A DCM’s

Detector
C DCM’s

Level-1 Sub-
event

Buffer(SEB)

ATM Switch

Detector
D DCM’s

Detector
SEB’s

Event
Builder

Controller

ONCS (Control)Assembly/Trigger
Processors

 (ATP’s)

Assembly/Trigger
Processors

 (ATP’s)

Figure 2: General architecture of the PHENIX event builder. Data begins at the SEBs located at front-
end of the switch and are pulled by the ATPs and assembled.

We have chosen ATM technology to be the network backbone of the PHENIX event builder. This choice
has also been made using the same constraints that we had for the processors. Drivers are well developed
and robust, and the hardware, with wide application in corporate intranets as well as WANs, is rapidly
decreasing in price, power, and flexibility. And having chosen to use Windows NT and ATM, it is a
natural choice to use the Winsock-2 API1 for our network programming. Winsock-2 offers several useful
extensions to normal BSD sockets, including asynchronous scatter-gather sends and receives, which have
proven to be essential elements in the event builder software design.

Event Builder System Architecture

The system architecture determining the flow of data (shown in Figure 2) has been designed to use a
combination of "push" and "pull" schemes. Event data from the Partition Modules is continuously read out
into an Intel-based processor, called a “sub-event buffer” (SEB) via a FIFO interfaced to the PCI bus by a
Pamette2 card, developed by Digital Research (see figure 3). The SEBs buffer the incoming data and
prepare it for assembly later in the system. One of the SEBs, designated the “Level 1 SEB” receives the
first-level trigger information, e.g. the event number, and makes the event known to the so-called “event
builder controller” (EBC). The EBC is responsible for performing the overall load-levelling for the system
by choosing the most available "assembly/trigger processor" (ATP) at the back-end of the switch. The
chosen ATP then signals all of the SEBs in the relevant partition to send their data, and subsequently
“pulls" the data from each of the SEBs and assembles the full event. We expect the assembled event to
remain in the ATP long enough to perform Level 2 trigger calculations whereupon the event will either be
rejected or sent to a data archiving system. After this is finished, the ATP will notify the EBC to instruct
all of the SEBs to flush their data for this event.

Software Implementation

We have chosen to develop the event builder software using C++ to take advantage of object-oriented
design methods3. This has proven invaluable for enforcing good design decisions as well as for aiding the
dividing of the full task among several programmers.

Several sets of classes have been developed which acted as the code infrastructure. These include:
• Multithreading and thread synchronization: all of the Win32 multithreading functions were

“wrapped” in objects that made them easier to access within user code, hiding system internals
(e.g. handles) inside private data members. It should be noted that in our experience we have
found that Windows supports several important features, e.g. multithreading and thread
synchronization, in a more complete and rational way than the equivalent POSIX version.

• Network I/O: in a similar way, all of the system specific procedures for opening sockets and
passing data to them are encapsulated within classes with methods allowing the passing of single
buffers as well as chains. Asynchronous I/O is a standard feature of NT and is used widely
throughout our system.

• Smart pointers: because resources must be shared by multiple threads and because data may have
lifetimes which vary depending on external components (e.g. because of timeouts) we have
rigorously used smart pointers to shared resources that only delete objects when all references to
them have been removed.

• Object Management: to avoid the potentially large overheads associated with constructing and
destroying large (e.g. over 1 kB) objects, we have developed a thread-safe object pool which uses
smart pointers to return “borrowed” objects back to the pool when all references to them have
been released. We do all of our buffer management in this way.

1 For further information, see the Winsock web page, http://www.winsock.com
2 For further information, please see the Pamette web page, http://www.research.digital.com/SRC/pamette/
3 B. Stroustrup, The C++ Programming Language, Third Edition. Reading, Mass.: Addison-Wesley
(1997)

These classes are used in all components of the event builder, and greatly reduce the amount of individual
code needed in the system.

We have defined an event builder “protocol”, the full set of instructions expected by each component type.
These all subclasses of an abstract Message interface providing streamer methods that facilitate the passing
of messages from component (i.e. EBC, SEB, or ATP) to component using our Network I/O classes.

1. Level 1 Announce: where the Level 1 SEB informs the EBC that a new event has landed in its
buffers.

2. Level 1 Acknowledge: where the EBC acknowledges to the Level 1 SEB that it has received the
event notification

3. ATP Assign: where the EBC tells a particular ATP to handle the new event
4. SEB Data Request: where the ATP tells all of the SEBs in the relevant partition to send its data

back
5. SEB Data Message: which is used by the SEB to encapsulate the event data to be sent to the ATP.

This message is sent if there are multiple transmissions from the same SEB, instructing the ATP to
perform another read to the same socket.

6. SEB Last Data Message: which is used by the SEB to send its data as well as to indicate that no
further data is forthcoming for this event from this SEB.

7. ATP Reply: where the ATP informs the EBC that it has finished an event and whether the trigger
algorithms have accepted or rejected it. If this message never arrives, another ATP is assigned to
this event, since the original one is malfunctioning.

8. SEB Flush Data: the EBC instructs the SEB to flush a particular event only after the ATP has
indicated that it has received the full event.

To minimize the amount of explicit testing and branching within the various components, we have
implemented an “Abstract Factory”4. Upon receipt of data from a remote component, the factory interprets
the first word as the “Message type” and calls the appropriate routine to construct the desired Message
object. The Message’s constructor of this object reads in the rest of the buffer to define its private data
members. When the object is fully constructed, the user need only execute the Message’s obey() method
which acts upon the object in which it sits to carry out the actions required by each step of the protocol.

4 E. Gamma et al, Design Patterns.Reading, Mass.: Addison-Wesley (1995)

SEB

DCM Crate

Pamette

FIFO

Main
Thread

sebControl

ATM Switch

Configuration

Control

Status

Monitoring

ONCS

"Pamette"
Thread

"Parse"
Thread

"Transport"
Thread

STL "Event" Map

STL "Event" Queue

CORBA

Event Data
Fast Control
Slow control
"Slow" Data

Figure 3: Internal and external components of the sub-event buffer (SEB) system. Shown are the
relationships between the PHENIX DAQ system, the real-time process and the control-process

Despite the large amount of reused code, each event builder component has a distinct structure. This is
manifest by the number of needed threads, their functions, and the data structures by which they
communicate. In the SEB (detailed in figure 3), we have attempted to isolate the I/O-dominated functions
from the CPU-intensive ones. Thus, we have one thread continuously receiving data from the Pamette
buffers, one parsing the received buffers to check for data integrity, and one transmitting the parsed data to
the ATP upon request. If an event is never requested, another thread is continuously checking the output
queues for timeouts. Finally, the Level 1 SEB has an additional thread that notifies the EBC and handles its
subsequent acknowledgement. In the EBC, we have similarly decoupled the receipt of messages, their
action upon the internal data structures, and the relaying of resulting messages to the rest of the system. In
the ATP, we have to deal with the fact that multiple SEBs contain data from the same event. Thus, it is
impractical to attempt to assemble multiple events simultaneously. Instead, the ATP is comprised of a
single processing thread that upon receiving an event assignment from the EBC, requests the full set of data
from the SEBs, and replies to the EBC before moving onto the next assignment. Efficient use of the
processor CPU will be made by running multiple processes which share a single input socket.

During experimental running, there are two processes running in each event builder component.
The first is a “control” process which spawns the second, “real-time”, process and communicates with it by
means of Win32 signals and shared memory. Since we wish to exchange entire objects between the
processes, we have adopted the use of the ROOT5 framework, which implements shared memory
“TMapFiles.” With this, we are free to exchange control objects as well as configuration objects.
Currently, we have a simple console interface for the control process. However, in the full system, it will
communicate with a Sun server via CORBA which will act as the main run control machine.

The PHENIX Raw Data Format (PRDF) has been optimized for the event building process. We have
defined two basic structures “frame” and “packet” (see Figure 4), with appropriate headers and footers, to
allow the wrapping of FEM data and their eventual assembly into entire events. An event consists of one
or more “frames” each of which contain one or more “packets”. At any point, multiple frames coexisting
in the same component can be collapsed to form a single frame, their packets concatenated and the header
values updated. Figure 5 shows the expected steps in this collapsing procedure: multiple DCMs (via the
Partition Module) each deliver a single frame to the SEB, which will collapse them into a single large
frame with multiple packets. The multiple SEBs will eventually send their data into a single ATP, which
will merge them into a single frame, representing one event. Since this procedure can involve many frames
originating from many sources, frames have the capability to record their history as they pass through the
system, which will be an invaluable aid in debugging a large. The packets also have the capability to store
“debug” information, which is separate from the official “data” but may also be essential in the earlier
stages of running.

5 For more information see the ROOT web site, http://root.cern.ch

SEB

DCM DCM DCM DCM

SEB SEB SEB

ATP

Frame Header

Packet 1

Packet 2

Packet 3

Frame History

Frame Errors

Packet Header

Packet Data

Debug Block

Packet Errors

Figure 4: Schematic view of the PHENIX
raw data format.

Figure 5: Steps in the collapse of frames to form
the final event in the ATP

Current Progress

We currently have a system consisting of a 10GBit/s Fore ASX-1000 switch (64 x 155Mbit ports) with 8
ports currently equipped. We also have four PCs, two 200 MHz Pentiums and two 400 MHz Pentium IIs.
With these, we are able to run a system with 2 SEBs, 2 ATPs, and one EBC (running in the same processor
as one of the SEBs). We call this system a “2x2” event builder.

To estimate our ultimate bandwidth, we have performed several tests using the switch. In Figure 6, we
have timed how long it takes to send a buffer into the ATM switch. As we are using asynchronous I/O in
these tests, we have measured several relevant quantities. “Call time” is the amount of time needed to start
the transmission with Winsock-2 and return to the main program. This is approximately constant for all
buffer sizes. “Completion time” is the time it takes to fully transmit the buffer to the switch. We have
observed that for buffers up to around 2kB, the transmission takes a constant time, approximately 40us.
Larger buffers take proportionally longer to send. However, in this regime, the total bandwidth is
approximately constant at 16 MB/s, which is the full expected bandwidth from our 155MB/s link. Smaller
buffers have lower bandwidth since Winsock-2 does not do asynchronous I/O for these buffers, increasing
the call time. We conclude that we can fully saturate our NIC by making sure we send buffers of
reasonable size. It should also be noted that scatter-gather transfers incur no significant extra overhead if
the number of buffers per transmission is less than a few hundred.

Since giving this talk at CHEP98, we have completed a prototype 2x2 event builder incorporating our full
software implementation of every component. Using this, we will be able to test all of the features of the
full system. Moreover, since the event builder has been designed from the outset to be easily scalable, we
expect no major difficulties in expanding to an arbitrary number of SEB and ATP processors.

Conclusions
We have designed and implemented an ATM-based event builder for the PHENIX detector at RHIC, based
on Intel processors running Windows NT and Winsock-2. The software design is fully object-oriented
(using Visual C++ 5.0 and 6.0) which has greatly facilitated the development process. Preliminary
measurements indicate that Winsock-2 will in fact deliver sufficient bandwidth to handle the expected data
rates. Finally, we have successfully implemented a prototype 2x2 event builder, with which we will be
able to determine the performance of the full system, expected to be completed in 1999.

1

10

100

1000

10000

100000

0 10000 20000 30000 40000 50000

Block Size (Bytes)

T
im

e
(u

se
c)

0

5

10

15

20

R
at

e
(M

b
yt

e/
s)

Call Time
Completion Time
Rate

Figure 6: Performance of a 400 MHz Pentium II using a Fore ATM NIC and Fore ASX-1000 Switch

